School of Information Studies
Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Table of Contents
minLevel2


...

Course Description

Classical statistical procedures used in information transfer research. Emphasis on underlying rationale for each procedure and on criteria for selecting procedures in a given research situation.

Credit(s)

3.0

Professor of Record

Jeffrey Stanton

Audience

Learning Objectives

Students who successfully complete the course can expect the following outcomes:

  • The ability to design a study that supports causal inference. 

  • The ability to develop an analysis plan that supports causal inference: including exploratory factor analysis, confirmatory factor analysis, multiple regression, path analysis, and structural equation modeling.  

  • Improved familiarity with R, R-Studio, and the ecosystem of add-on packages on offer, leading to the capability of independently undertaking causal analysis on future research projects. 

  • Essential knowledge of how to diagnose, repair, and interpret causal analytical models with manifest andlatent variables. 

  • Practice with conducting analyses of and writing about analytical results for these various kinds of data.

Course Syllabus

IST 777 Spring 2021 Syllabus - Jeffrey Stanton

...

Other iSchool Courses

Children Display
alltrue
pageiSchool Graduate Courses

...